PriceIndices

PyPI Latest Release Coverage License Downloads Code style: black Imports: isort

Development Environment

Poetry

Installation

pip

pip install PriceIndics

Poetry

poetry add PriceIndices

From Source (Github)

git clone https://github.com/dc-aichara/Price-Indices.git

cd Price-Indices

python3 setup.py install

Usages

from PriceIndices import MarketHistory, Indices

Examples

>>> history = MarketHistory()

# Get Market History 

>>> df_history = history.get_history("bitcoin", "2020-03-16", "2021-03-15")  
>>> df_history.head()
         open          high           low         close        volume    market_cap        date
0  59267.429049  60540.992712  55393.165363  55907.200226  6.641937e+10  1.042946e+12  2021-03-15
1  61221.134297  61597.918396  59302.316977  59302.316977  4.390123e+10  1.106226e+12  2021-03-14
2  57343.370247  61683.864014  56217.972382  61243.084766  6.066983e+10  1.142369e+12  2021-03-13
3  57821.218747  57996.619490  55376.650088  57332.088964  5.568994e+10  1.069366e+12  2021-03-12
4  55963.180089  58091.062703  54484.593089  57805.123019  5.677234e+10  1.078136e+12  2021-03-11

# Get closing price

>>> price_data  =  history.get_price("bitcoin", "2020-03-16", "2021-03-15") 

>>> price_data.head()
         date         price
0  2021-03-15  55907.200226
1  2021-03-14  59302.316977
2  2021-03-13  61243.084766
3  2021-03-12  57332.088964
4  2021-03-11  57805.123019

indices = Indices(df=price_data, plot_dir="plots")
>>> df_bvol = indices.get_vola_index(
        plot=True,
        plot_name="vola_index.png",
        show_plot=False  
)  
>>> df_bvol.head()
        date    price  BVOL_Index
0 2019-10-29  9427.69    0.711107
1 2019-10-28  9256.15    0.707269
2 2019-10-27  9551.71    0.709765
3 2019-10-26  9244.97    0.698544
4 2019-10-25  8660.70    0.692656


>>> df_rsi = indices.get_rsi(
        plot=True,
        plot_name="rsi.png",
        show_plot=False,
)   

>>> print(df_rsi.head())
        date    price       RSI_1  RS_Smooth      RSI_2
0 2019-10-30  9205.73      64.641855   1.624958  61.904151
1 2019-10-29  9427.69      65.707097   1.709072  63.086984
2 2019-10-28  9256.15      61.333433   1.597755  61.505224
3 2019-10-27  9551.71      66.873327   2.012345  66.803267
4 2019-10-26  9244.97      63.535368   1.791208  64.173219


>>> df_bb = indices.get_bollinger_bands(
        days=20, 
        plot=True,
        plot_name="bollinger_bands.png",
        show_plot=False,
        ) 
>>> df_bb.head()
        date    price     BB_upper   BB_lower
0 2019-10-30  9205.73  9635.043581 -8428.5855
1 2019-10-29  9427.69  9550.707153 -8397.6225
2 2019-10-28  9256.15  9408.263164 -8356.0250
3 2019-10-27  9551.71  9268.466516 -8304.6565
4 2019-10-26  9244.97  9003.752779 -8239.3520


"""
This will also save Bollingers bands plot in your working directory as 'bollinger_bands.png' in plots folder.
"""


>>> df_macd = indices.get_moving_average_convergence_divergence(
        plot=True,
        plot_name="macd.png",
        show_plot=False,
)
"""
This will return a pandas DataFrame and save EMA plot as 'macd.png' in in plots folder. 
""""
>>> df_macd.head()
        date    price       MACD
0 2019-10-30  9205.73   0.000000
1 2019-10-29  9427.69  17.706211
2 2019-10-28  9256.15  17.692715
3 2019-10-27  9551.71  41.057952
4 2019-10-26  9244.97  34.426864


>>> df_sma = indices.get_simple_moving_average(
        days=20,
        plot=True,
        plot_name="sma.png",
        show_plot=False,
) 
"""This will return a pandas DataFrame and save EMA plot as 'sma.png' in plots folder.
""""
>>> df_sma.head()
        date    price          SMA
0 2019-10-30  9205.73  8467.488000
1 2019-10-29  9427.69  8400.797333
2 2019-10-28  9256.15  8330.597333
3 2019-10-27  9551.71  8268.254667
4 2019-10-26  9244.97  8187.244667


>>> df_ema = indices.get_exponential_moving_average(
        periods=(20,70),
        plot=True,
        plot_name="ema.png",
        show_plot=False,
)
"""This will return a pandas DataFrame and save EMA plot as 'ema.png' in plots folder.
""""

>>> df_ema.head()
        date    price       EMA_20       EMA_70
0 2019-10-30  9205.73  9205.730000  9205.730000
1 2019-10-29  9427.69  9226.869048  9211.982394
2 2019-10-28  9256.15  9229.657710  9213.226552
3 2019-10-27  9551.71  9260.329356  9222.761297
4 2019-10-26  9244.97  9258.866561  9223.386895
>>> 


License

MIT © Dayal Chand Aichara

Check out webpage of PriceIndices package.

I have created a cryptocurrency technical indicators dashboard which uses this library.

Disclaimer:

All content provided here, is for educational purpose and your general information only, procured  from third party sources.
I make no warranties of any kind in relation to this content, including but  not limited to accuracy
and updatedness. No part of the content that I provide  constitutes  financial  advice, legal advice 
or any other form of advice meant for your specific reliance for any purpose. Any use or reliance on
my content is solely at your own risk  and  discretion. You should conduct your own research, review, 
analyse and  verify my content  before relying  on them. Trading is a highly risky activity that can 
lead to  major  losses, please  therefore  consult your financial advisor before making any decision.
No content on this Site is meant to be a solicitation or offer.